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Decay rate distributions of disordered slabs and application to random lasers
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We compute the distribution of the decay rates~also referred to as residues! of the eigenstates of a disordered
slab from a numerical model. From the results of the numerical simulations, we are able to find simple
analytical formulas which describe these results well. This is possible for samples both in the diffusive and in
the localized regimes. As an example of a possible application, we investigate the lasing threshold of random
lasers.
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I. INTRODUCTION

A very successful approach to describe disordered m
rials is supplied by random-matrix theory, see Refs.@1,2# for
reviews. While one can put the beginning of the rando
matrix theory at Wigner’s surmise for describing the scatt
ing spectra of heavy atomic nuclei@3#, its theoretical foun-
dations were laid much later@4#. It was very successfully
applied to electronic transport in disordered wires and me
scopic quantum dots, and recently these methods have
adopted for model~quantum! transport of optical radiation in
media with spatially fluctuating dielectric constant@5–8#.

In the theoretical treatment of disordered materials, t
particular geometries are of special importance, namely,
disordered slab and the chaotic cavity~see Fig. 1!. The prin-
cipal difference between the geometries is easily explain
A chaotic cavity is an object, in which the dynamics is ch
otic due to the shape of the cavity or due to scatterers pla
at random positions. The size of the opening is small co
pared to the total surface area of the cavity. Particles~elec-
trons, photons! are then ‘‘trapped’’ inside the structure for
time that is long enough to ergodically explore the ent
cavity. In a disordered slab, particles cannot be trapped
efficiently. They can no longer explore the entire volum
ergodically but they still stay long enough to explore t
entire cross section of the sample, thus still making
random-matrix description possible. In order to call this g
ometry a ‘‘wire’’ or a ‘‘waveguide,’’ its length should be
much larger than its width. To be able to apply the theo
only the much weaker criterion that the length is sufficien
larger than the mean-free path of the medium has to be
filled.

Two different aspects are of special importance in
theory of disordered media, namely, transport properties
resonances. The transport properties~moments of the eigen

FIG. 1. Two frequent geometries in the theory of disorde
media are the chaotic cavity~left! and the disordered slab~right!.
The motion in the chaotic cavity is completely ergodic while in t
disordered slab, it is ergodic only in the transversal direction.
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values of the transmission and reflection matrices! are known
for the disordered slab in the limit that it is wide@9#, for the
chaotic cavity with an opening that is so small that only o
or two modes can propagate through it@10,11#, or a chaotic
cavity with a wide opening@6#.

Less is known about the poles of such systems.~The ei-
genvalues of the Hamiltonian correspond to poles of the s
tering matrix, and these show up as resonances in a sca
ing experiment. Hence, the somewhat inconsist
nomenclature.! The beginning of random-matrix theory ca
be put at the moment when Wigner surmised the eigenva
distribution for a closed chaotic cavity@1,3,12#. Here, we are
interested in open systems, where the eigenvalues acqui
imaginary part.~The imaginary part is referred to as residue!
It determines the decay rate of the~quasi!eigenstate of the
system. For chaotic cavities with broken time-reversal sy
metry, the decay rate distribution is known analytically for
opening of arbitrary size@13#. The distribution for the more
important case of preserved time-reversal symmetry@14# is
not known as an expression that could be evaluated dire
@15# but can be approximated by a cavity with broken sy
metry and an opening of half the real size.

Information on the residues of a disordered slab is v
limited, and only the scaling behavior of the large residue
in the localized regime was determined recently@16,17#. This
deficiency is felt especially strong in the random-laser co
munity since the location of the residues gives the las
threshold of an optical system, and most experimental se
resemble a disordered slab much more than they resem
cavity. This paper fills this gap by presenting the results
numerical simulations. The quality of the numerical dec
rate distributions is good enough such that it allows us
arrive at analytical formulas for the distribution function, in
cluding its dependence on the parameters of the system.
idea to use high-quality simulations to arrive at formulas
not completely new as the distribution of the scatteri
strengths of chaotic cavities was found in the same way@6#.

This paper is organized as follows: First, we introduce
Anderson Hamiltonian used to describe the disordered s
In Sec. III, we show how the eigenvalues of that Hamiltoni
can be computed in an efficient numerical way. Depend
on the length of the slab, it can be in either the diffusive or
the localized regime. We will analyze the decay rate dis
butions for both regimes separately, first in Sec. V for t
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diffusive and then in Sec. VI for the localized regime. Un
that point, all results are completely general and can be
plied to electronic and photonic systems. In Sec. VII,
specialize on the lasing threshold in amplifying disorde
media. We distinguish between the diffusive and the loc
ized regimes~Secs. VII A and VII B!. We conclude in Sec
VIII.

II. ANDERSON HAMILTONIAN FOR A DISORDERED
SLAB

We consider a two-dimensional slab of lengthL and width
N. The slab is described by an Anderson-type lattice Ham
tonian with spacing 1. In the Anderson model, transpor
modeled by nearest-neighbor hopping between lattice s
Without loss of generality, we can set the hopping rate to
With a spatially varying potentialP(x,y), the Hamiltonian
becomes

H(x,y),(x,y)5P~x,y! ~yÞ1,L !, ~1a!

H(x,y),(x,y)5P~x,y!2 ik ~y51,L !, ~1b!

H(x,y),(x11,y)51 ~x,N!, ~1c!

H(x,y),(x21,y)51 ~x.1!, ~1d!

H(x,y),(x,y11)51 ~y,L !, ~1e!

H(x,y),(x,y21)51 ~y.1!. ~1f!

All other elements are zero.x runs from 1 toN, andy from
1 to L.

The real partE of the eigenvalues ofH in the limit of
large N and L is confined to the interval@24;4#. ~If the
average ofP(x,y) is nonzero, the interval is simply shifte
by that average. IfP(x,y) is fluctuating as a function ofx
and y—like it does for a disordered medium—the interv
becomes a bit wider.! For electronic systems,E gives the
energy of the eigenstate, and Eq.~1! hence describes a sla
with a conduction band of width 8. For photonic system
the real part of the eigenvalue gives the eigenfrequency.
both the systems, the imaginary partg of the eigenvalue
gives the decay rate of the eigenstate.~Actually not g but
ratherg/2 is the decay rate but for the ease of notation,
will continue to refer tog simply as the decay rate.!

k in Eq. ~1b! quantifies the strength of the coupling b
tween the slab and the outside@13#. Using the units intro-
duced above,k has the value sin2k where k is the wave
vector at the energy at which particles are injected and,
spectively, emitted. This quantity is proportional to the v
locity of the particle perpendicular to the interface. In t
center of the band, sink51 whereas at the edges, sink50.

If k is chosen to be constant~i.e., not to depend on en
ergy!, ideal outcoupling can be described only for one s
cific value of the energy. We will do this since, otherwis
solving the Hamiltonian no longer is a standard eigenva
problem, and setk[1, hence modeling ideal coupling at th
center of the band@18#. Working at the center of the conduc
tion bands offers the advantage that the widthN of the
01660
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sample is identical to the numberN of propagating modes
and thus allows to describe the largest number of propa
ing modes for a given size of the Hamiltonian~i.e., given
numerical work!. It is possible to include energy depende
coupling terms@17# but it should be stressed that a consta
k is more efficient and gives completely correct results
long as only eigenvalues near the respective energy are
sidered. We setk51, meaning ideal coupling at the cent
of the conduction band.

It should be stressed that—even though we are mode
a two-dimensional system—the results are valid for thr
dimensional systems as long asL*N. A particle that is in-
jected into the slab ergodically explores the entire cross s
tion of the sample before being emitted again, and he
loses its memory, of which sites are ‘‘connected’’ by hoppi
terms. The sites can then be rearranged, e.g., in a th
dimensional structure. Only for very short samples,L&N,
this is not possible but for such samples already applying
Anderson model~i.e., only allowing nearest-neighbor hop
ping! is very questionable. The only ‘‘real’’ restriction tha
can limit the application of our results to certain photon
three-dimensional systems is that the particles can leave
sample only at the front and at the back—and not through
‘‘sides.’’

In the formulation of Eq.~1!, the matrixH has double
indices but these are easily removed by consideringHnn8
with n5x1(y21)N. ~It would not make sense to setn
5y1(x21)L since usuallyL@N, and we want to work
with a band matrix that is as small as possible.! This results
in a matrix of the form as depicted in Fig. 2. It is a band
LN3LN matrix with bandwidth 2N11. Also within the
band, most elements are zero~since usuallyN@1). The ma-
trix is symmetric but non-Hermitian as there are comp
numbers on the diagonal.

The model~1! has been widely used since an efficie
way to compute the transmission through such a slab
known @19#. The method of recursive Green’s function a
lows to compute the entire scattering matrix, hence all lin
transport properties, in a time of orderO(LN3) and with
only minimal storage requirementsO(N2). No explicit ref-
erence to the HamiltonianH is made, so that eigenvalue
cannot be computed by this method.

III. COMPUTING EIGENVALUES OF SYMMETRIC
COMPLEX NON-HERMITIAN BANDED MATRICES

Since the HamiltonianH from Eq.~1! is both banded and
sparse, one might be tempted to use an eigensolver for sp

FIG. 2. The HamiltonianH has a band structure. The thin line
contain matrix elements that are mostly 1, the diagonal is fil
with complex numbers, and all other elements are zero. The e
matrix is symmetric but non-Hermitian~since there are complex
elements on the diagonal!.
3-2
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matrices to compute the eigenvalues of Eq.~1!. A sparse
eigenvalue routine needs to be able to solve the equatio

~H2m1!xW5yW ~2!

for the unknown vectorxW for arbitrarym andyW . In particular,
the eigensolver needs to setm close to an eigenvalue ofH so
that the matrixH2m1 is ill conditioned. A numerical solu-
tion of Eq. ~2! is then difficult and very expensive. Furthe
more, only one eigenvalue is found at a time, and the con
of which eigenvalue the algorithm will converge to is diffi
cult. ~Algorithms for sparse matrices always use an inve
iteration so that the corresponding eigenvector will be
turned without an additional effort but the eigenvector is
no use for us.! Using an algorithm for banded matrices
thus the better alternative.

There exist a number of algorithms for real symmetric
complex Hermitian band matrices. Both problems are ch
acterized by real eigenvalues, so that they are conceptu
identical. Only one algorithm for computing an eigenval
~plus the corresponding eigenvector! of a general complex
band matrix has been published@20#. It uses inverse itera
tion, so it is of limited use here.

We thus had to implement our own eigenvalue solver. T
eigenrepresentation ofH in terms of the diagonal matrixL
5diag(l1 , . . . ,lN) of the eigenvaluesl i of A and the ma-
trix U of eigenvectors is

H5ULU21. ~3!

We now observe that for symmetric, that includescomplex
symmetric,H it is always possible to choose eigenvecto
such thatUUT51. If U would be a real matrix, one would
call U orthogonal but since it is complex, there is no spec
name for the propertyUUT51.

Algorithms for diagonalizing a real symmetric matrixA
implicitly decomposeA as

A5QDQT, QQT51, ~4!

with the matrixD of eigenvalues ofA. It is, therefore, pos-
sible to adapt such an algorithm for our needs. Most al
rithms for banded matrices first reduceA to tridiagonal form
A8 by transformations of the formA85Q8AQ8T, and we
will adopt this strategy.~A matrix is called tridiagonal if only
the diagonal and its neighboring elements are nonzero.A
would be real, the transformationA→A8 would be called a
similarity transformation.! For a band matrix, this is possibl
in an efficient way since it is not necessary to compute~and
thus store! the full matricesQ8, and by annihilating the ele
ments of the matrixA in a clever order, the band structure
kept intact at all steps@21,22#.

The reduction of the complex matrixH to tridiagonal
shape is done by straight-forward adaptation of this al
rithm from real to complex numbers, where care needs to
taken that the dot productxW•yW5( ixiyi is used and not the
dot productxW•yW5( i x̄i yi normally used for complex vectors
~The overbar marks the complex conjugate.!
01660
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To compute the eigenvalues of the tridiagonal matrix
the real symmetric or complex Hermitian case, methods
isolate eigenvalues in disjunct intervals are used~‘‘divide
and conquer’’ and similar methods@23#!. Such methods work
for both of these cases as all eigenvalues are real and
thus be ordered. This no longer is possible here as the ei
values are complex. We therefore use the QR and QL m
ods, respectively@24#.

For a K3K banded matrix with bandwidthW, the time
needed to compute the eigenvalues increase asO(K2W),
whereas the storage requirements increase asO(KW). In
terms of the dimensionsL andN of the disordered slab, this
means that the time increases asO(L2N3) and the storage
space asO(LN2). For given computational resources, bo
scalings impose an upper limit on the system size that
feasibly be treated. For typical values of the ratioL and N,
and for ‘‘realistic’’ computer equipment, the time limit i
reached somewhat earlier than the memory limit@25#.

With respect to a similar algorithm for full matrices, on
wins a factorL ~usually of order several hundred! for both
time and memory by using the banded algorithm, thus allo
ing to treat system that could not be treated otherwise. S
the work presented in this paper is a big numerical challen
To arrive at the results, of the order of 100 000 h of CP
time on fast PC’s were needed. The work had to be dist
uted onto a large number of computers to make this a
sible task.

IV. NUMERICAL SIMULATIONS

Disorder is modeled by assigning random values
P(x,y). It is assumed that these random numbers are
formly distributed in the interval@2w;w# so thatw mea-
sures the amount of disorder.

We only consider eigenvalues near the center of the c
duction band as the assumption of ideal coupling is o
valid there. For numerical reasons, it is essential that
center of the conduction band is atE50, i.e., one is not
allowed to add an offset toP(x,y) @26#.

We thus choose a window@2d;d# and only include ei-
genvalues in further analyses when their real part is ins
that window. If the window is too large, systematic errors a
introduced while too small a window leads to bad statisti
No analytical expression for the optimal value ofd exists but
a suitable value is easily determined by the following pro
dure. Histograms for the probability distribution of the dec
rate are calculated from the same initial data, i.e., the sa
computed eigenvalues, for several values ofd. A selection
from these histograms is depicted in Fig. 3. When—start
from larged—a decrease ofd no longer changes the histo
grams~except for an increase in noise!, a suitable value has
been found. In our case, we foundd50.1, and we will be
using this value through out this paper.

The formulation of the model in Sec. II is in terms o
generic units. Contact with a microscopic model or an e
periment is best made in terms of the mean-free path. It
be computed from the length dependence of the transmis
probability T through the sample. In the diffusive regime,l
&L!Nl, it is given @1# by
3-3
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1

T
511

L

l
. ~5!

The mean-free path can be computed by fittingT(L) to this
functional form.

The transmission probability has been computed using
method of recursive Green’s function@19# for variable disor-
der strengthw. As Fig. 4 shows, the numerically compute
mean-free pathl is for the range ofw in question to a very
good approximation given by

l 5
6

w3/2
. ~6!

~Computed for each value ofw from 50 samples withL
52,4, . . .,98,100 andN550.! In the following, we will no
longer make explicit reference tow but rather give the more
intuitive mean-free pathl.

V. DIFFUSIVE REGIME

For a sample lengthL with l &L!Nl, the sample is said
to be in the diffusive regime. It is immediately obvious th

FIG. 3. Probability distribution of the decay rates for given sy
tem parameters as a function of the window size around the ce
in which eigenvalues are included in computing the probability d
tribution. The different dots mark the distributions withd50.01,
0.1, 0.5, and 1.0. Going fromd51.0 tod50.1 shows a systemati
trend but a further decrease tod50.01 no longer changes the his
togram, i.e., the histograms ford50.1 andd50.01 are identical up
to a bit of noise.

FIG. 4. Mean-free pathl as a function of disorder strengthw
from a numerical simulation~crosses! and from Eq.~6!.
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the diffusive regime can only be observed in sufficien
wide samples,N@1.

For chaotic cavities with broken time-reversal symmet
an analytical result for the decay rate distribution has b
given by Fyodorov and Sommers@13#. We start from their
result and rescale it,

P~y!5
1

y2M !
E

0

My

xMe2xdx5
1

y2 F12e2My(
k50

M
Mk

k!
ykG .

~7!

P(y) is normalized to one and in our scaling holds for
M.1 peaked near a value ofy of order 1. In the original
formulation for a chaotic cavity,M is the number of modes
propagating through the opening of the cavity.

In the following, we will argue that the decay rate distr
bution P(g) can be written in the form~7! as

P~g!5
1

g0
PS g

g0
D ~8!

with some scaling factorg0 and some effective number o
modesMÞN. In Fig. 5, a comparison between the analytic
suggestion and a simulation is given, and the agreemen
striking. The horizontal axis has been plotted logarithmica
since this results in both the differences between theP(y)
for different N becoming easier to recognize and in giving
more prominent place to the small-g tail of P(g). In most
applications, including the random laser discussed late
this paper, one is much more interested in smallg than in
largeg.

The results of the simulations are fitted ‘‘by eye’’ again
the functional form~7!, resulting in one pair of values forg0
andM for each set of parameters. Especially, at very smalg,
there are sometimes numerical errors that introduce artif
into the numerical histogram so that using an automatic
ting algorithm is not feasible.~Usually, we computed 500–
1500 realizations for each parameter set.! From our simula-
tions, we find that the scaling factorg0 only depends on the
lengthL of the sample and its mean-free pathl but not on its
width N, and seems to be given by

-
er,
-

FIG. 5. The numerically computed probability distributionP(g)
for L5175, N550, l 512.9 and comparison with Eq.~7! with M
516.
3-4
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g05
2l

L2
. ~9!

As Fig. 6 shows, the agreement between the result of
numerical simulations and Eq.~9! is good, and all major
deviations are for smallL, where universal scaling is ex
pected to be worse than for largerL. The model equations se
the speed of propagation to 1 but it is obvious that for so
other choice of the propagation speedc, one has to change
Eq. ~9! to g052cl/L2.

While the determination ofg0 is very precise, there is a
somewhat larger error involved in determiningM by fitting
the analytical form to the results of numerical simulation
First, we only fitted against integerM, though, in principle, a
generalization of Eq.~7! to nonintegerM is possible, see Eq
~25!. Second, ifM*25, the difference betweenP(y) for M
and forM11 becomes too small to tell with certainty, whic
of these two values describes the numerical result be
Third and final, even with 500–1500 samples for each se
parameter values, there are still some fluctuations in the
merically computed histogram for the decay rate distribut
that in some cases make the decision on the rightM a bit
difficult. Considering all of this, one should allow for a
error of 1 forM, and even of 2 forM*25.

We have computedM for a series of samples with increa
ing length for three different widthsN. As Fig. 7 shows, the
effective numberM of modes is well approximated by

M5
N

11L/~6l !
. ~10!

The agreement between this suggested analytical form
the numerical simulation becomes better as the widthN of
the sample is increased. From the simulations, it is obvi
that the functional form in Eq.~10! is correct but there still is
the ~small! possibility that the factor 6 might need to b
replaced by a slightly smaller value. To answer this ques
with certainty, we would need to increase bothL andN sig-
nificantly. Unfortunately, such simulations are outside
present time and memory constraints.

Equations~7!–~10! give a good description of the deca
rate distribution of a disordered slab in the diffusive regim
provided the slab is sufficiently wide. Since the transver

FIG. 6. Scaling factorg0 as a function ofl andL for l 524 and
N510,20,50,100~open symbols! and l 512.9 andN550 ~solid
circles!. The line marks the prediction from Eq.~9!.
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length scales are set by microscopic quantities~wavelength
of the light for optical systems, Fermi wavelength for ele
tronic systems!, all macroscopic objects are ‘‘wide.’’

VI. LOCALIZED REGIME

If the lengthL of a disordered medium is increased, t
phenomenon of localization sets in onceL*Nl ~see Ref.@1#
for a review!. In the localized regime, the probability o
transmissionT through the sample is reduced significan
and decays exponentially with the lengthL of the sample.
The length scalej is called the localization length, and ca
be computed from an ensemble of disordered slabs by c
puting the average of the logarithm of the transmission a
function of the length of the samples, hence

2L/j5^ ln T~L !&. ~11!

One should note that this is not identical to fitting the tran
mission to ^T(L)&}exp(2L/j) since the large sample-to
sample fluctuations ofT(L) in the localized regime would
give a value forj that is off by a factor 4. The localization
length can also be computed analytically from the mean-f
path using the DPMK equation, with the result@27–29#

j5
N11

2
l , ~12!

and agrees well with our numerical results.
It is generally accepted that the distribution of the dec

ratesg ~at least for smallg) in the localized regime is log-
normal, i.e., lng is distributed according to a Gaussian d
tribution. Recent interest has rather been in the large-g tail,
which was shown to follow a power law@16,17#. In a log-
normal distribution, most of the weight lies in the right ta
so these papers give a sufficient description for most of
eigenmodes. In the context of applications to random las
we are, however, interested in the small decay rate tail, he
in the log-normal distribution.

To our knowledge, there is only a single paper by Tit
and Fyodorov that gives explicit expressions for the para
eters of that log-normal distribution@16#. However, their

FIG. 7. Effective numberM of degrees of freedom as a functio
of the lengthL of the sample for a sample withN530, N550, and
N570 propagating modes, respectively. The line marks the pre
tion from Eq.~10!, the points are from numerical simulations. Th
size of the ‘‘error bars’’ does not indicate some estimated er
interval but simply marks the computed value61.
3-5
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analytical results are for a somewhat different system so
difficult to tell whether they agree or disagree with our fin
ings. We will return to this aspect at the end of this secti
First, we want to present the results of our numerical sim
lations.

Using the log-normal ansatz, the distribution of the dec
ratesg is

P~g!5b expS 2
~ ln g2 ln g0!2

s2 D . ~13!

The numerically computed histograms indeed follow t
form, see Fig. 8, except for the large-g tail—as already men-
tioned above but this deviation is only seen in a log-log p

Figure 9 shows in the left the numerically computedg0 as
a function ofL for N515. Also displayed is the localizatio
lengthj computed numerically from the transmission, bei
in good agreement with the analytical prediction~12!. The
quality of the data is good enough to say with confidence
g0 decays exponentially with a length scale that is somew
larger thanj. Figure 9 shows in the right, the value ofg0
also for two other values ofN, and all the three cases are we
described by introducing a numerical fitting factora,

g0}expS 2
L

aj D with a51.12. ~14!

FIG. 8. Numerically computed distribution of the decay rateg
for a sample in the localized regime (L571.55 l , N515) and com-
parison with the log-normal distribution~13!.
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It is known that working at the center of the conduction ba
when in the localized regime can introduce certain artifac
especially in analytical approaches. Among others, the lo
ization length at the band center can differ by'10% from
the value outside the center@30#. We have definedj based on
the transmission through the sample~at an energy corre-
sponding to the band center!, and in transmission resonance
at all energies can contribute. A numerical prefactora that
differs by about 10% from 1 thus does not come as a co
plete surprise.

We still need to compute the proportionality factor a
pearing in Eq.~14!. For this purpose, we need to plot th
ratio of the numerically computedg0 and the right-hand side
of Eq. ~14! for different values ofN. We did this for L
571.55 l . Since this is a very expensive operation, we ha
computed a large number of samples only forN510,15,20
so that their statistics is better than for the other values oN.
An estimate of the error for these ‘‘better’’ data points h
been included in the figure. This allows us to conclude th

g05
a

N2
expS 2

L

aj D with a51.12. ~15!

It should be noted that this equation contains two numer
coefficients, and there is no obvious reason why they sho
be identical. Still, we find that they both are approximate
a51.12.

Reintroducing ‘‘physical units’’ into Eq.~15! is a bit more
difficult than it was for Eq.~9! where it was obvious that on
simply has to multiply by the velocity of propagationc.
Here, one has to multiply byc/D, whereD is the perpen-
dicular grid spacing. Due to the assumption of one propag
ing mode per~lateral! grid point made in Sec. II,D is not
arbitrary but has a well-defined physical meaning. For
electronic case,D5p/kF with kF the wave vector at the
Fermi level, and for the photonic caseD52l/p with l the
wavelength of the light@hencec/D51/(4n)].

Determining the widths of the distribution is more diffi-
cult since we can only use the left wing of the distribution
the right wing eventually turns into a power-law tail and th
no longer follows a log-normal distribution. Once again, w
have accumulated more data forN510,15,20 so that some
indication of the error is possible for these three data poi
th

l

FIG. 9. Left: Transmission through the sample and positiong0 of the maximum of the log-normal distribution as a function of the leng
of the sample~for N515). There is a small but finite difference between the length scales for both quantities. Center: Positiong0 of the
maximum of the log-normal distribution as a function of length for samples of different widthN. Right: Prefactor in front of the exponentia
for L571.55 l for different N @cf. Eqs.~14! and ~15!#. The dashed line marks the curve 1.12/N2.
3-6
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From our data, we propose the formula

s5
2

3 S L

aj D 2/3

, ~16!

wherea51.12 has the same value as in Eq.~15!. As Fig. 10
shows, there clearly is no disagreement between the num
cal data and Eq.~16!. However, please remember that the2

3

should be thought of as a fitting factor that might not
exactly 2/3 but perhaps rather 0.67 or some other nume
factor.

Since the distribution is log normal only for not too larg
g ~remember the power-law tail for largeg), the normaliza-
tion is nontrivial @P(g) is not normalized to 1 any longer#
and cannot be computed fromg0 ands. The constanta in
Eq. ~13! is directly equal to the height of the peak of th
numerically computedP(g). Since the total area undernea
the numerically computedP(y) ~and hence its normaliza
tion! is dominated by the large-g tail, a has a relatively large
error. Taking all the available data, the most likely value

b5
1

N2
expS L

aj D . ~17!

This value has been determined from a large number
simulations that for space reasons cannot be presented

FIG. 10. Top: Comparison of the numerically computeds with
the prediction from Eq.~16!. Bottom: Comparison of the numeri
cally computed prefactor@from dividing the numericals by
(L/aj)2/3, cf. Eq. ~16!# with the prediction 2/3 for samples ofL
571.55 l . For some values ofN a higher number of samples ha
been computed, so that the data quality is high enough to
compute an error estimate. This has been indicated in the figu
01660
ri-

al
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Unfortunately, the quality of the data is not good enough
decide whether an additional prefactora51.12 should ap-
pear.

At present, it is not possible to tell whether our resu
agree with the ones put forward by Titov and Fyodorov@16#.
In particular, they arrive at

g0}expS 2
3L8

j D , ~18!

whereas our finding~15! wasg0}exp(2L/1.12j). There are
two obvious differences between the model used by th
and the model employed by us. First, for numerical reaso
we work at the center of the conduction band while th
work near~but sufficiently far away from! the band edges
This might explain the factora51.12 that we have to intro-
duce. Second and probably more important, they consid
system of lengthL8 that is closed at one end whereas o
systems have lengthL and are open at both ends. It is obv
ous that a half-closed system of lengthL8 corresponds to an
open system of lengthL.L8. Equation~18! suggests that
these two systems could be mapped into each other by
ting L'3L8 but there is no further evidence to support th
claim.

VII. LASING THRESHOLD OF A RANDOM LASER

A random laser is a laser where the necessary feedba
not due to mirrors at the ends of the laser but due to rand
scattering inside the medium@6,31,32#. We model the ran-
dom laser as a disordered slab containing a dye that is ab
amplify the radiation in a certain frequency interval with ra
1/ta. The lasing threshold is the amplification rate, at whi
the intensity of the emitted radiation diverges in a line
model. If saturation effects are included, the emitted inten
increases abruptly but finitely at crossing the lasing thre
old.

The lasing threshold is given by the value of the small
decay rate of all eigenmodes in the amplification windo
@33#. ~Remember thatg actually is twice the decay rate. O
the other hand, also 1/ta enters the relevant formulas onl
with a prefactor 1/2.g thus indeed gives the necessary a
plification rate 1/ta.) This is easily understood since th
simply means that in the mode with the smallest decay r
the photons are created faster by amplification than they
leave the sample~5decay!. It, however, also follows from a
complete quantum mechanical analysis@8,34#.

The distribution of the decay rate has been computed
this paper. A certain numberK of modes will be in the fre-
quency window where amplification is possible. The lasi
threshold is given by the smallestg of theseK modes. In a
simple picture that is valid onceK@1, we can assume tha
theK differentg ’s are distributed independently according
P(g) @33#. The distributionP̃(g) of the smallest mode and
hence of the lasing threshold then becomes

P̃~g!5KP~g!F12E
0

g

P~g8!dg8GK21

. ~19!

so
.
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For KÞ1, the distributionP̃(g) of the lasing threshold is
no longer identical to the distributionP(g) of the decay rate
of each individual mode. In particular, not only the prec
form of these two distributions will be different, but also th
‘‘typical’’ value of the lasing threshold can be different from
the typical decay rateg0. Interestingly, for chaotic cavities in
the diffusive regime, it was found that the latter two quan
ties differ only insignificantly@34,35# which might seem
counterintuitive. A slab geometry is more ‘‘complicated’’ i
that the scalingK}N ‘‘tries’’ to lower the lasing threshold
with increasingN.

For K@1, the distributionP̃(g) is sharply peaked aroun
its maximum. The positiongm of the maximum is given by
the solution of the equationdP̃(ym)/dgm50, hence

05
dP~gm!

dgm
F12E

0

gm
P~g8!dg8G2~K21!@P~gm!#2.

~20!

While Eq.~19! is difficult to compute numerically due to th
large exponentK21@1, in Eq. ~20!, this exponent no
longer appears.

Equation~20! depends onP(g) which in turn depends on
the dimensionsL andN of the system. In assuming that th
number of propagating modes is equal to the widthN of the
sample, we already have made the assumption that the w
~and hence also the length! is measured in units ofl/2. ~The
‘‘2’’ accounts for polarization.! The total number of modes in
the sample, thus isLN. We assume that a fractionf of them
is inside the amplification window of the dye, henceK
5 f NL. For simplicity, we neglect complications as th
shape of the mode profile.~It is easily incorporated into the
numerics and we refrain from doing this just to prevent h
ing to introduce even more parameters.! f depends only on
the chemical properties of the dye and not on the dimens
of the samples.

In the following, we will show how to compute the mo
likely lasing threshold for samples in both the diffusive a
in the localized regimes.

A. Lasing threshold in the diffusive regime

The change of the lasing threshold with increasing sys
size is influenced by a subtle interplay betweenL and N in
determining the distributionP(g) and in determining the
total numberK5 f NL of modes.

If K@1, the lasing mode has a decay rate in the lowg
tail of P(g) ~i.e., g,g0 or y,1). The weight of this tail is

E
0

1

P~y!dy5
M M21

~M21!!
e2M, ~21!

and goes to zero asM becomes larger. ForM→`, the tail
disappears completely, as is already obvious from
asymptotic form of the distribution,

PM→`~y!5H 0 ~y,1!

1/y2 ~y>1!.
~22!
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With increasingN and hence increasingM, the probability
that a given mode has a smally thus decreases rapidly. O
the other hand, we are interested in the smallest decay
out of theK modes, andK increases linearly withN. These
are two counteracting effects, and it is not obvious which
these two is stronger.

The effect of an increase of the system sizeL, on the
contrary, is obvious. First, the average decay rateg0 de-
creases according to Eq.~9!. Second,M decreases from Eq
~10!, leading to even smaller values forg of the lasing mode.

There have been some analytical attempts to compute
lasing threshold for a chaotic cavity@34,35#. For largeM, the
small-y tail of Eq. ~7! was approximated by

P~y!'
1

2M
@11erf~AM /2@y21# !#. ~23!

This allows to arrive at scaling laws of the lasing thresho
for variableM at fixed K. Unfortunately, the difference be
tween two counteracting effects of an increase inN are so
small that Eq.~23! is a bit too crude for our needs.

We thus have to revert to a numerical procedure. Equa
~7! can be rewritten using the incomplete gamma functio

G~a,x!5E
x

`

ta21e2tdt. ~24!

G(a,0) reduces to the well-known gamma functionG(a).
For numerical reasons, it is advisable to introduce the re
larized G function Q(a,x)5G(a,x)/G(a). Fast numerical
algorithms to computeQ(a,x) exist. @Please note that in the
literature the definitions of the regularizedG function some-
times disagree in whichQ(a,x) is denoted as 12Q(a,x)].
Now we can express Eq.~7! and its derivative and integral a

P~y!5
1

y2
@12Q~M11,My!#, ~25a!

dP~y!

dy
5

~My!M

y2G~M !
e2My2

2

y3
@12Q~M11,My!#,

~25b!

E
0

y

P~y8!dy85
1

y
@Q~M11,My!21#112Q~M ,My!,

~25c!

so that Eq.~20! can be evaluated efficiently.

B. Lasing threshold in the localized regime

From Eq.~13!, we directly arrive at

dP~g!

dg
522b

ln g2 ln g0

gs2
expF2

~ ln g2 ln g0!2

s2 G ,

~26a!
3-8
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FIG. 11. Most likely, lasing threshold as a function of the lengthL/ l and the widthN of the sample. ForL/ l *N ~the lower right part of
the diagram!, the sample is localized, forL/ l &N ~the upper left part!, the sample is diffusive. The diagonal line marks the division, and
results close to that line should thus be viewed with caution. The left diagram depicts the results forf 50.1, the central diagram forf
50.001. The right diagram again depicts the results for the localized regime withf 50.1 but the horizontal axis has been rescaled toL/j
instead ofL/ l . The numbersx at the contour lines mean 10xc/ l in the diffusive regime, and 10xc/D in the localized regime.
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P~g8!dg85
bApsg0

2
es2/4F11erfS 2 ln~g/g0!2s2

2s D G .
~26b!

A further simplification is not possible, and we did not ma
age to find suitable approximations. Also for the localiz
regime, we thus are restricted to a numerical evaluation.

C. Numerical results

The lasing threshold is computed numerically from E
~20!, using the formulas from Secs. VII A and VII B. Into th
formulas presented there, we have to insert the correct
pendence ofg0 , M, s, etc., onL andN which was presented
earlier in this paper. Despite this complication, the numer
calculation is straight forward as Eq.~20! possesses a singl
root only. Since this root has a change of sign, it is ea
found numerically.

Figure 11 shows the results for both the diffusive and
localized regimes, for bothf 50.1 l and f 50.001 l . ~The
mean-free path appears as a factor since the figure is in
L/ l and notL.! The formulas found in this paper are val
deep in the diffusive and localized regimes, respectiv
Near the crossover, hence near the lineL'Nl, this condition
is not fulfilled. The numerical values near the diagonal li
in Fig. 11 should thus be viewed with caution.

As can be seen from the figure, in the diffusive regim
with N@L/ l , the lasing threshold becomes almost indep
dent of the widthN of the sample~for sufficiently largeN),
and the most likely value of the lasing threshold is about

gm'
2cl

L2
, ~27!

hence the value given by Eq.~9!. This means that even
thoughK@1, P(y) for y,1 is already so small that it domi
nates over the large value ofK. Differences between this
simple approximation and the precise numerical result
pear for finiteN, with the size of this difference dependin
on f. However, for designing experiments, it is obvious fro
the results presented here that the only feasible way to lo
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the lasing threshold of a random laser in the diffusive regi
is by increasing its length, not by modifying its width.

As Fig. 11 shows, also in the localized regime, there
only a small dependence onf. This means that in a log
normal distribution, the weight of the left tail is so small th
unlessK is exponentially large,gm cannot become much
smaller than the positiong0 of the peak of the distribution
The difference with the diffusive regime is that the lasi
threshold can be lowered efficiently not only by increasi
the length but also by decreasing the widthN and hence
driving the system further into localization.

It is no surprise that samples in the localized regime g
erally have a lower lasing threshold than samples in the
fusive regime. We have shown that also the diffusive samp
can have an ‘‘acceptably small’’ lasing threshold as it
trivial to make them very long~since there is no need to car
much about their width!. For both the diffusive and the lo
calized regimes, the typical decay rates of a single mode
comparable to the lasing threshold.

VIII. CONCLUSIONS

We have numerically computed the distributions of t
residues~or decay rates! of a disordered slab. The slab ha
lengthL, mean-free pathl, width and cross-sectional areaN,
respectively (N is given as number of propagating channel!,
and velocity of propagationc. We were able to ‘‘guess’’
simple analytical formulas that were able to describe the
merical results well.

For a sample in the diffusive regime (L&Nl) we found in
Eqs.~7!–~10!,

P~g!5
L2

2lc
PS gL2

2lc D , ~28a!

P~y!5
1

y2F 12

GS 11
N

11L/6l
,

Ny

11L/6l D
GS 11

N

11L/6l D G , ~28b!

whereG(a,x) is the incomplete gamma function. The agre
ment between the numerical results and the proposed for
3-9
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las is good, and there is the possibility that Eq.~28! might
become exact in the limitL/ l @N@1. However, there is only
numerical and no analytical evidence to back this claim.

For a sample in the localized regime (L*Nl) with local-
ization lengthj5(N11)l /2, we found in Sec. VI,

P~g!5
1

N2
expS L

aj
2

~ ln g2 ln g0!2

s2 D , a51.12,

g05
a

N2
expS 2

L

aj D , s5
2

3 S L

aj D 2/3

. ~29!

The quality of the simulations results in the localized regi
is somewhat less than in the diffusive regime. For this r
of-

at
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ys
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en
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son, Eq.~29! should be understood as an approximate
only, and it very probably differs from the exact relatio
especially outside the band center.

These results can be applied to both electronic and p
tonic systems. For photonic systems, we have shown
under realistic assumptions, the lasing threshold of a rand
laser is close tog0 both in the diffusive and in the localize
regimes. Equations~28! and~29! thus not only give the dis-
tribution of the decay rate of each individual mode but als
good estimate of the lasing threshold, i.e., the smallest de
rate of a large number of modes.
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