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Decay rate distributions of disordered slabs and application to random lasers
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We compute the distribution of the decay rafalso referred to as residyesf the eigenstates of a disordered
slab from a numerical model. From the results of the numerical simulations, we are able to find simple
analytical formulas which describe these results well. This is possible for samples both in the diffusive and in
the localized regimes. As an example of a possible application, we investigate the lasing threshold of random
lasers.
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I. INTRODUCTION values of the transmission and reflection matrniegs known
for the disordered slab in the limit that it is widl@], for the
A very successful approach to describe disordered mateshaotic cavity with an opening that is so small that only one
rials is supplied by random-matrix theory, see Rgfs2] for ~ or two modes can propagate through1i0,11], or a chaotic
reviews. While one can put the beginning of the random-avity with a wide opening6].
matrix theory at Wigner's surmise for describing the scatter- | ess is known about the poles of such systefiibe ei-
ing spectra of heavy atomic nuclig], its theoretical foun-  genvalues of the Hamiltonian correspond to poles of the scat-
dations were laid much latd#]. It was very successfully tering matrix, and these show up as resonances in a scatter-
applied to electronic transport in disordered wires and mesdng experiment. Hence, the somewhat inconsistent
scopic quantum dots, and recently these methods have befBmenclatur@. The beginning of random-matrix theory can
adopted for modelquantum transport of optical radiation in - pe put at the moment when Wigner surmised the eigenvalue
media with spatially fluctuating dielectric constdbt-8]. distribution for a closed chaotic cavifgt,3,17. Here, we are
In the theoretical treatment of disordered materials, twQnterested in open systems, where the eigenvalues acquire an
particular geometries are of special importance, namely, thnaginary part(The imaginary part is referred to as residue.
disordered slab and the chaotic cavigge Fig. 1 The prin- |t determines the decay rate of tfiguasjeigenstate of the
cipal difference between the geometries is easily explainedystem. For chaotic cavities with broken time-reversal sym-
A chaotic cavity is an object, in which the dynamics is cha-metry, the decay rate distribution is known analytically for an
otic due to the shape of the cavity or due to scatterers placegpening of arbitrary siz€13]. The distribution for the more
at random positions. The size of the opening is small comimportant case of preserved time-reversal symmgtdj is
pared to the total surface area of the cavity. Partibdsc-  not known as an expression that could be evaluated directly
trons, photonsare then “trapped” inside the structure for a [15] but can be approximated by a cavity with broken sym-
time that is long enough to ergodically explore the entiremetry and an opening of half the real size.
cavity. In a disordered slab, particles cannot be trapped that |nformation on the residues of a disordered slab is very
efficiently. They can no longer explore the entire volumelimited, and only the scaling behavior of the large residue tail
ergodically but they still stay long enough to explore thejn the localized regime was determined receftl§,17). This
entire cross section of the sample, thus still making ajeficiency is felt especially strong in the random-laser com-
random-matrix description possible. In order to call this ge-munity since the location of the residues gives the lasing
ometry a “wire” or a “waveguide,” its length should be threshold of an optical system, and most experimental setups
much larger than its width. To be able to apply the theoryresemble a disordered slab much more than they resemble a
only the much weaker criterion that the Iength is SUffiCienﬂycavity_ This paper fills this gap by presenting the results of
larger than the mean-free path of the medium has to be fulhumerical simulations. The quality of the numerical decay
filled. rate distributions is good enough such that it allows us to
Two different aspects are of special importance in thegrrive at analytical formulas for the distribution function, in-
theory of disordered media, namely, transport properties angiuding its dependence on the parameters of the system. The
resonances. The transport propertig®ments of the eigen- jdea to use high-quality simulations to arrive at formulas is
not completely new as the distribution of the scattering
strengths of chaotic cavities was found in the same [Gdy
This paper is organized as follows: First, we introduce the
Anderson Hamiltonian used to describe the disordered slab.
In Sec. lll, we show how the eigenvalues of that Hamiltonian
FIG. 1. Two frequent geometries in the theory of disorderedcan be computed in an efficient numerical way. Depending
media are the chaotic caviijeft) and the disordered slalight). on the length of the slab, it can be in either the diffusive or in
The motion in the chaotic cavity is completely ergodic while in the the localized regime. We will analyze the decay rate distri-
disordered slab, it is ergodic only in the transversal direction. butions for both regimes separately, first in Sec. V for the
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diffusive and then in Sec. VI for the localized regime. Unitil

that point, all results are completely general and can be ap-

plied to electronic and photonic systems. In Sec. VII, we H =
specialize on the lasing threshold in amplifying disordered -
media. We distinguish between the diffusive and the local-

ized regimegqSecs. VII A and VII B. We conclude in Sec.

VIII.
FIG. 2. The Hamiltoniar{ has a band structure. The thin lines
Il. ANDERSON HAMILTONIAN FOR A DISORDERED contain matrix elements that are mostly 1, the diagonal is filled
’ SLAB with complex numbers, and all other elements are zero. The entire

matrix is symmetric but non-Hermitiatsince there are complex
We consider a two-dimensional slab of lengthnd width  elements on the diagonal
N. The slab is described by an Anderson-type lattice Hamil-

tonian with spacing 1. In the Anderson model, transport i Sample is identical to the numbét of propagating modes,

modeled by nearest-neighbor hopping between lattice Siteand thus allows to describe the largest number of propagat-

) i . ﬁ1g modes for a given size of the Hamiltonige., given
Without loss of generality, we can set the hopping rate t0 1, merical work. It is possible to include energy dependent

With a spatially varying potentiaP(x,y), the Hamiltonian  cqupling termg17] but it should be stressed that a constant
becomes k is more efficient and gives completely correct results as
long as only eigenvalues near the respective energy are con-

Hcy), = POGY) (y#1L), (13 sidered. We sek=1, meaning ideal coupling at the center
_ . _ of the conduction band.
Hicy) o =POGY) —ix - (y=1L), (1b) It should be stressed that—even though we are modeling
” —1 (x<N) (10 a two-dimensional system—the results are valid for three-
(), (x+1y) ™ X ' dimensional systems as long s N. A particle that is in-

” _1 -1 1 jected into the slab ergodically explores the entire cross sec-
(), (x=1y) ™ (x>1), (1d tion of the sample before being emitted again, and hence

_ loses its memory, of which sites are “connected” by hopping
Hixy,ey+n=1  (y<L), (18 terms. The sites can then be rearranged, e.g., in a three-

'y -1 (y>1) (1f) dimensional structure. Only for very short samplessN,
(), (y=1) y=2): this is not possible but for such samples already applying the

All other elements are zere.runs from 1 toN, andy from  Anderson modeli.e., only allowing nearest-neighbor hop-
1tol. ping) is very questionable. The only “real” restriction that

The real partE of the eigenvalues of{ in the limit of ~ ¢&n limit the application of our results to certain photonic
large N and L is confined to the interval—4:4]. (If the three-dimensional systems is that the particles can leave the
average ofP(x,y) is nonzero, the interval is simply shifted sample only at the front and at the back—and not through the

by that average. IP(x,y) is fluctuating as a function of “sides.” . .
and y—like it does for a disordered medium—the interval . I_n the formulation of Eq.(l), the matrix?{ ha_s dquble
becomes a bit wider.For electronic system< gives the ndices but these are easily removed by considefifg,
energy of the eigenstate, and Ed) hence describes a slab With N=x+(y—1)N. (It would not make sense to set
with a conduction band of width 8. For photonic systems,=Y T (X~ 1)L since usuallyL>N, and we want to work
the real part of the eigenvalue gives the eigenfrequency. Foith & band matrix that is as small as possiblnis results
both the systems, the imaginary partof the eigenvalue In a matrix of _the f_orm as de_p|cted in Fig. 2. It is a banded
gives the decay rate of the eigensta@ctually not y but LNXLN matrix with bandw@th N+1. Also within the
rathery/2 is the decay rate but for the ease of notation, Wé)‘,"mq' most elements are zémcglusuallyﬂ»l). The ma-
will continue to refer toy simply as the decay rafe. trix is symmetric put non-Hermitian as there are complex
x in Eg. (1b) quantifies the strength of the coupling be- numbers on the diagonal.

tween the slab and the outsifi€3]. Using the units intro- The model(1) has been widely used since an efficient
duced abovex has the value sk wherek is the wave way to compute the transmission through such a slab is

vector at the energy at which particles are injected and, rellSnOWn [19]). The method of recursive Green's function al-

spectively, emitted. This quantity is proportional to the ve ows to compute Fhe e_nt|re scatte:clng drg:ttlr_lﬁshencg al! Irl]near
locity of the particle perpendicular to the interface. In theransPOrt properties, in a time of ordex(LN") and wit

center of the band, sk=1 whereas at the edges, 0. only minimal storage requiremen@®(N?). No explicit ref-
If x is chosen to be constafite., not to depend on en- erence to the Hamiltoniafi{ is made, so that eigenvalues

ergy), ideal outcoupling can be described only for one spe—CannOt be computed by this method.

cific value of the energy. We will do this since, otherwise,
solving the Hamiltonian no longer is a standard eigenvalue
problem, and sek=1, hence modeling ideal coupling at the
center of the banfil8]. Working at the center of the conduc-  Since the Hamiltoniarft{ from Eq.(1) is both banded and

tion bands offers the advantage that the widthof the  sparse, one might be tempted to use an eigensolver for sparse

IIl. COMPUTING EIGENVALUES OF SYMMETRIC
COMPLEX NON-HERMITIAN BANDED MATRICES
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matrices to compute the eigenvalues of Ef). A sparse To compute the eigenvalues of the tridiagonal matrix for
eigenvalue routine needs to be able to solve the equation, the real symmetric or complex Hermitian case, methods that
isolate eigenvalues in disjunct intervals are ugétdivide
(H—pl)x=y (2)  and conquer”and similar metho@i23]). Such methods work

for both of these cases as all eigenvalues are real and can
thus be ordered. This no longer is possible here as the eigen-
values are complex. We therefore use the QR and QL meth-
ods, respectively24].

for the unknown vectox for arbitrary u and;?. In particular,
the eigensolver needs to getclose to an eigenvalue @{ so

that the matrixH— w1 is ill conditioned. A numerical solu- For aK xK banded matrix with bandwidtkV, the time

tion of Eq.(2) is t_hen dlffICL!|t and very expensive. Further- needed to compute the eigenvalues increas©@W),
more, only one eigenvalue is found at a time, and the control

of which eigenvalue the algorithm will converge to is diffi- whereas the storage requirements increas©g@sw). In

cult. (Algorithms for sparse matrices always use an invers:;I‘erms of the dimensionk andN of the disordered slab, this

iteration so that the corresponding eigenvector will be re-neans that the time increases @6L"N") and the storage

2 . .
turned without an additional effort but the eigenvector is ofSPace a(LN). For given computational resources, both

no use for ug.Using an algorithm for banded matrices is ?calllrg?s t;mptjoset Zn Epp?r I_|m||t or: the sfyts;emaf_lzedtr'llat can
thus the better alternative. easibly be treated. For typical values of the rdti@and N,

There exist a number of algorithms for real symmetric orand r]:OZj reallstlcr:] tcomFutetL eqltJerment, thel[':lﬁrg]e limit is
complex Hermitian band matrices. Both problems are charf€acned somewhat eartier than theé memory ;
With respect to a similar algorithm for full matrices, one

acterized by real eigenvalues, so that they are conceptual%ns a factorL (usually of order several hundreébr both

I(%leL?:(iﬁg Sgrlyegggng:ggrg?gn;r:c\%oigfnguggge?; ecgrir;\ll:)l(ueftime and memory by using the banded algorithm, thqs allow-

band matrix has been publish¢a0]. It uses inverse itera- Ing to treat system t'hat .COU|d no.t be treated ot'herW|se. Still,

tion. so it is of limited use here the work presented in this paper is a big numerical challenge.
. ' To arrive at the results, of the order of 100000 h of CPU

We thus had to implement our own eigenvalue solver. Th%ime on fast PC’s were needed. The work had to be distrib-

eigenrepresentation 6f in terms of the diagonal matriA .
— diag(\ \y) of the eigenvaluea, of A and the ma- utt()ald ontck> a large number of computers to make this a fea-
P sible task.

trix U of eigenvectors is

H=UAUL. 3 IV. NUMERICAL SIMULATIONS

Disorder is modeled by assigning random values to
P(x,y). It is assumed that these random numbers are uni-
formly distributed in the interval] —w;w] so thatw mea-
sures the amount of disorder.

We only consider eigenvalues near the center of the con-
duction band as the assumption of ideal coupling is only
valid there. For numerical reasons, it is essential that the
center of the conduction band is B=0, i.e., one is not
allowed to add an offset tB(x,y) [26].

We thus choose a windoyw—d;d] and only include ei-
genvalues in further analyses when their real part is inside
that window. If the window is too large, systematic errors are
introduced while too small a window leads to bad statistics.
No analytical expression for the optimal valuedéxists but
a suitable value is easily determined by the following proce-
dure. Histograms for the probability distribution of the decay
rate are calculated from the same initial data, i.e., the same
computed eigenvalues, for several valuesdofA selection
. - ) L from these histograms is depicted in Fig. 3. When—starting
in an efficient way since it is not necessary to compated from larged—a decrease od no longer changes the histo-

X 8 S
thus sto;éart]he full _r:wAa_trlces(Ig ' anddby arl;nmgllaan the eIe-_ grams(except for an increase in nojsa suitable value has
ments of the matrixA in a clever order, the band structure is y oo found. In our case, we found=0.1, and we will be

kept intact at all step21,22.
The reduction of the complex matrik/ to tridiagonal

We now observe that for symmetric, that includesnplex
symmetric,H it is always possible to choose eigenvectors
such thatUUT=1. If U would be a real matrix, one would
call U orthogonal but since it is complex, there is no special
name for the property UT=1.

Algorithms for diagonalizing a real symmetric matux
implicitly decomposeA as

A=QDQ', QQ'=1, (4)

with the matrixD of eigenvalues of\. It is, therefore, pos-
sible to adapt such an algorithm for our needs. Most algo
rithms for banded matrices first redudeo tridiagonal form

A’ by transformations of the form\’=Q’AQ’", and we
will adopt this strategyA matrix is called tridiagonal if only
the diagonal and its neighboring elements are nonzerA. If
would be real, the transformatioh— A’ would be called a
similarity transformation.For a band matrix, this is possible

using this value through out this paper.

. ; . X The formulation of the model in Sec. Il is in terms of
shape is done by straight-forward adaptation of this algogeneric ynits, Contact with a microscopic model or an ex-
rithm from real to comple>§ naumbers, where care needs to b eriment is best made in terms of the mean-free path. It can
taken that the dot produot-y=ZXx;y; is used and not the pe computed from the length dependence of the transmission
dot productx- y=X;x;y; normally used for complex vectors. probability T through the sample. In the diffusive reginie,
(The overbar marks the complex conjugate. =<L<NlI, it is given[1] by

016603-3



M. PATRA PHYSICAL REVIEW E 67, 016603 (2003

1400 T T T

1200 | x%( 0.1
I ® 0.5

1000 | X 1.0
[ M ﬂ%

800

600

op X+

P
P(y) [arb. units]

400
200

ol ;.
107 1078 1072
Y Y/ Yo

FIG. 3. Probability distribution of the decay rates for given sys-  FIG. 5. The numerically computed probability distributiBg)
tem parameters as a function of the window size around the centefor L=175,N=50, | =12.9 and comparison with E¢7) with M
in which eigenvalues are included in computing the probability dis-~ 16.
tribution. The different dots mark the distributions with=0.01,

0.1, 0.5, and 1.0. Going from=1.0 tod=0.1 shows a systematic the diffusive regime can only be observed in sufficiently
trend but a further decrease de=0.01 no longer changes the his- wide samplesN>1.

togram, i.e., the histograms fdr=0.1 andd=0.01 are identical up For chaotic cavities with broken time-reversal symmetry,
to a bit of noise. an analytical result for the decay rate distribution has been
given by Fyodorov and Sommef43]. We start from their
1 L result and rescale it,
==1+-. (5)
T I
. _ 1My, 1 v MK
The mean-free path can be computed by fitfii{¢.) to this Ply)=— f xVe de=—2 1-e MY AL
. y M!Jo y K=o k!
functional form.
The transmission probability has been computed using the )

method of recursive Green’s functiph9] for variable disor-
der strengthw. As Fig. 4 shows, the numerically computed P(y) is normalized to one and in our scaling holds for all
mean-free path is for the range ofv in question to a very M>1 peaked near a value gfof order 1. In the original

good approximation given by formulation for a chaotic cavityM is the number of modes
propagating through the opening of the cavity.
6 In the following, we will argue that the decay rate distri-
= T (6)  butionP(g) can be written in the fornt7) as
(Computed for each value off from 50 samples with_ P(y)= ip(l) (8)
=2,4,...,98,100 andN=50.) In the following, we will no Yo \ Yo

longer make explicit reference o but rather give the more

intuitive mean-free path with some scaling factot, and some effective number of

modesM # N. In Fig. 5, a comparison between the analytical
V. DIFFUSIVE REGIME suggestion and a simulation is given, and the agreement is
] ] . striking. The horizontal axis has been plotted logarithmically

For a sample length with <L <N, the sample is said gjnce this results in both the differences between Rig)
to be in the diffusive regime. It is immediately obvious that ¢y, gifferent N becoming easier to recognize and in giving a
more prominent place to the smalltail of P(y). In most
applications, including the random laser discussed later in
this paper, one is much more interested in smathan in
large y.

The results of the simulations are fitted “by eye” against
the functional form(7), resulting in one pair of values for,
andM for each set of parameters. Especially, at very small
there are sometimes numerical errors that introduce artifacts
into the numerical histogram so that using an automatic fit-
0 ' ' ' ' ' ' ting algorithm is not feasible(Usually, we computed 500—
1500 realizations for each parameter )sEtom our simula-
tions, we find that the scaling factey only depends on the

FIG. 4. Mean-free path as a function of disorder strength  lengthL of the sample and its mean-free pa&tbut not on its
from a numerical simulatioicrossegand from Eq.(6). width N, and seems to be given by

30 T T T T T T

25

20 |
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FIG. 6. Scaling factoty, as a function of andL for | =24 and FIG. 7. Effective numbeM of degrees of freedom as a function
N=10,20,50,100(open symbols and |=12.9 andN=50 (solid  ©f the lengthL of the sample for a sample witd=30, N=50, and
circles. The line marks the prediction from E¢P). N=70 propagating modes, respectively. The line marks the predic-
tion from Eq.(10), the points are from numerical simulations. The
size of the “error bars” does not indicate some estimated error
¥ _2_| 9) interval but simply marks the computed valtiel .
o_ .
L2

length scales are set by microscopic quantifigavelength
As Fig. 6 shows, the agreement between the result of thef the light for optical systems, Fermi wavelength for elec-
numerical simulations and Eq9) is good, and all major tronic systemk all macroscopic objects are “wide.”
deviations are for smalL, where universal scaling is ex-
pected to be worse than for largerThe model equations set VI. LOCALIZED REGIME
the speed of propagation to 1 but it is obvious that for some
other choice of the propagation spegdone has to change
Eq. (9) to yo=2cl/L2.

While the determination ofy, is very precise, there is a
somewhat larger error involved in determinii by fitting
the analytical form to the results of numerical simulations.
First, we only fitted against integ@, though, in principle, a
generalization of Eq(7) to nonintegeM is possible, see Eq.
(25). Second, ifM =25, the difference betweep(y) for M
and forM + 1 becomes too small to tell with certainty, which
of these two values describes the numerical result better. —L/g=(InT(L)). (11)
Third and final, even with 500—-1500 samples for each set of
parameter values, there are still some fluctuations in the nudne should note that this is not identical to fitting the trans-
merically computed histogram for the decay rate distributionmission to (T(L))xexp(—L/¢&) since the large sample-to-
that in some cases make the decision on the dra bit  sample fluctuations of (L) in the localized regime would
difficult. ConSidering all of thiS, one should allow for an give a value foré’ that is off by a factor 4. The localization
error of 1 forM, and even of 2 foM =25. length can also be computed analytically from the mean-free

We have computel for a series of samples with increas- path using the DPMK equation, with the resi27—29
ing length for three different widthil. As Fig. 7 shows, the

If the lengthL of a disordered medium is increased, the
phenomenon of localization sets in orice NI (see Ref[1]
for a review. In the localized regime, the probability of
transmissionT through the sample is reduced significantly
and decays exponentially with the lendthof the sample.
The length scal€ is called the localization length, and can
be computed from an ensemble of disordered slabs by com-
puting the average of the logarithm of the transmission as a
function of the length of the samples, hence

effective numbeM of modes is well approximated by N+ 1I 5
=— L (12
M= N 10
~1+L/(6l)" (10 and agrees well with our numerical results.

It is generally accepted that the distribution of the decay

The agreement between this suggested analytical form aratesy (at least for smally) in the localized regime is log-
the numerical simulation becomes better as the wihlitbf ~ normal, i.e., Iny is distributed according to a Gaussian dis-
the sample is increased. From the simulations, it is obviougribution. Recent interest has rather been in the largai,
that the functional form in Eq10) is correct but there stillis  which was shown to follow a power layi6,17. In a log-
the (small possibility that the factor 6 might need to be normal distribution, most of the weight lies in the right tail,
replaced by a slightly smaller value. To answer this questiorso these papers give a sufficient description for most of the
with certainty, we would need to increase batlandN sig-  eigenmodes. In the context of applications to random lasers,
nificantly. Unfortunately, such simulations are outside thewe are, however, interested in the small decay rate tail, hence
present time and memory constraints. in the log-normal distribution.

Equations(7)—(10) give a good description of the decay  To our knowledge, there is only a single paper by Titov
rate distribution of a disordered slab in the diffusive regime,and Fyodorov that gives explicit expressions for the param-
provided the slab is sufficiently wide. Since the transversakters of that log-normal distributiofl6]. However, their
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' ' ' ' ' ] It is known that working at the center of the conduction band
] when in the localized regime can introduce certain artifacts,
especially in analytical approaches. Among others, the local-
ization length at the band center can differ #$10% from
the value outside the centg@0]. We have defined based on
r ] the transmission through the samplet an energy corre-
L ] sponding to the band cenjeand in transmission resonances
i ] at all energies can contribute. A numerical prefacahat
sl il differs by about 10% from 1 thus does not come as a com-
10° 10® 107 10® 10° 10* 10 plete surprise.
v We still need to compute the proportionality factor ap-
FIG. 8. Numerically computed distribution of the decay rgte P€aring in Eq.(14). For this purpose, we need to plot the
for a sample in the localized regime € 71.551, N=15) and com-  ratio of the numerically computegl, and the right-hand side
parison with the log-normal distributiofi.3). of Eq. (14) for different values ofN. We did this forL
=71.55l. Since this is a very expensive operation, we have
analytical results are for a somewhat different system so it §0mputed a large number of samples only fo+10,15,20
difficult to tell whether they agree or disagree with our find- SO that their statistics is better than for the other values. of
ings. We will return to this aspect at the end of this sectionAn estimate of the error for these “better” data points has
First, we want to present the results Of our numerica' Simubeen inClUded in the figure. Th|S a”OWS us to COhC|ude that
lations.

P(y) [arb. units]
T
1

i - istributi a L
Usmg the log-normal ansatz, the distribution of the decay vo=—exp — —| with a=1.12. (15)
ratesy is N2 ag
| | 2 It should be noted that this equation contains two numerical
P(y)=bexp — (Iny=In ) _ (13 coefficients, and there is no obvious reason why they should
a? be identical. Still, we find that they both are approximately

a=1.12.

Reintroducing “physical units” into Eq(15) is a bit more
difficult than it was for Eq(9) where it was obvious that one
simply has to multiply by the velocity of propagatian
Here, one has to multiply bg/A, whereA is the perpen-
dicular grid spacing. Due to the assumption of one propagat-
ing mode per(latera) grid point made in Sec. IIA is not
arbitrary but has a well-defined physical meaning. For the

; ; ; ; lectronic caseA=w/kg with kg the wave vector at the
quality of the data is good enough to say with confidence th . F F :
vo decays exponentially with a length scale that is somewha erm: |ther|], a:cnt(:] folf. tnehphom?ffi‘ﬁ: 2N/ with ) the
larger than¢é. Figure 9 shows in the right, the value ¢f wavelength of the lighthencec/A =1/(4)].

also for two other values d{, and all the three cases are well De_termlmng the widtho of the d|st_r|but|on IS more d'.ﬁ"
described by introducing a numerical fitting factor cult since we can only use the left wing of the distribution—
the right wing eventually turns into a power-law tail and thus

no longer follows a log-normal distribution. Once again, we

The numerically computed histograms indeed follow this

form, see Fig. 8, except for the largetail—as already men-

tioned above but this deviation is only seen in a log-log plot.
Figure 9 shows in the left the numerically computggdas

a function ofL for N=15. Also displayed is the localization

length ¢ computed numerically from the transmission, being

in good agreement with the analytical predictiti®). The

L . _ have accumulated more data fde=10,15,20 so that some
yoxexp ——| with a=1.12. (14 e . . )
a¢ indication of the error is possible for these three data points.
10-3 —T1 v T T 7 10.4 \'\'\'I\'\""\I""I""I'"'I""I""I"" 14-10-3\ T T T T T T T T T T T
~ Thme = \\
- - RS A ?0 2r ¥ 7
transmission S T TR N
104 | e 10° | el el A 10 X -
exp(-L /83 1]) o = e “w. g 8 .
= N=15" g 8f x .
= ) 5 .
5| . s L - ] = | X i
10 exp(-L /891 10 > 6
N=10"~ T x
= 4 e .
10—8 1 1 1 10-7 1 1 1 1 1 1 \I\m 2 1 1 1 1 1 ‘-\T‘—"
20 30 40 50 60 70 80 90 100 35 40 45 50 55 60 65 70 75 10 12 14 16 18 20
L/l L/l N

FIG. 9. Left: Transmission through the sample and positigiof the maximum of the log-normal distribution as a function of the length
of the samplgffor N=15). There is a small but finite difference between the length scales for both quantities. Center: Bgsitidhe
maximum of the log-normal distribution as a function of length for samples of different WdRight: Prefactor in front of the exponential
for L=71.55| for differentN [cf. Egs.(14) and(15)]. The dashed line marks the curve 12/
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35 prrrT T T Unfortunately, the quality of the data is not good enough to
- ] ++ 1 decide whether an additional prefacta=1.12 should ap-
N N=20 -+ N=15 , -3 pear. o _
o5 L L F P At present, it is not possible to tell whether our results
o P T agree with the ones put forward by Titov and Fyodofb6].
20 e . In particular, they arrive at
T N=10 ]
S ; 3L’
10 . 1 1 1 1 1 1 1 ] ’YOoceX% - ?) 1 (18)
35 40 45 50 55 60 65 70 75
i whereas our findingl5) was ygcexp(—L/1.12). There are
0.68 — : : : two obvious differences between the model used by them
+ i . . and the model employed by us. First, for numerical reasons,
0.67 % { ¥ | we work at the center of the conduction band while they
. 1 ! ! . work near(but sufficiently far away fromthe band edges.
% el ¢ 1 This might explain the factoa=1.12 that we have to intro-
B duce. Second and probably more important, they consider a
0ss | i system of lengtiL’ that is closed at one end whereas our
' + systems have length and are open at both ends. It is obvi-
. . . . ] ous that a half-closed system of length corresponds to an
064 10 15 o0 o5 open system of length >L’. Equation(18) suggests that
N these two systems could be mapped into each other by set-
ting L~3L' but there is no further evidence to support this

FIG. 10. Top: Comparison of the numerically computedavith
the prediction from Eq(16). Bottom: Comparison of the numeri-
cally computed prefactoffrom dividing the numericalo by
(L/a&)?3, cf. Eq. (16)] with the prediction 2/3 for samples df VII. LASING THRESHOLD OF A RANDOM LASER

=71.55]. For some values dfl a higher number of samples has A d | . | h th feedback i
been computed, so that the data quality is high enough to also random laserIs a laser where (ne necessary ieedback 1S

compute an error estimate. This has been indicated in the figure. not dug to ,m'r,rors at the e_nds of the laser but due to random
scattering inside the mediuf®,31,33. We model the ran-
dom laser as a disordered slab containing a dye that is able to
amplify the radiation in a certain frequency interval with rate
1/7,. The lasing threshold is the amplification rate, at which
the intensity of the emitted radiation diverges in a linear
model. If saturation effects are included, the emitted intensity
increases abruptly but finitely at crossing the lasing thresh-

. . Id.
wherea=1.12 has the same value as in Etp). As Fig. 10 0 . L
shows, there clearly is no disagreement between the numeri- The lasing threshold is given by the value of the smallest

cal data and Eq(16). However, please remember that the decay rate of all eigenmodes _in th_e amplification window
should be thought of as a fitting factor that might not be[33]' (Remember thay actually is twice the decay rate. On

exactly 2/3 but perhaps rather 0.67 or some other numerica® Other hand, also 2/ enters the relevant formulas only

factor. with a prefactor 1/2.y thus indeed gives the necessary am-

Since the distribution is log normal only for not too large p!ification rate 1‘{'&',) This is easi_ly understood since this
y (remember the power-law tail for larg®), the normaliza- simply means that in the mode with the_ _smgllest decay rate,
fion is nontrivial[ P(y) is not normalized to 1 any longer the photons are created faster by amplification than they can
and cannot be computed frogy and o-. The constana in leave the samplé=decay. It, however, also follows from a

o : lete guantum mechanical analyjs34).
Eqg. (13) is directly equal to the height of the peak of the complete quant .
numerically computedP(y). Since the total area underneath The distribution of the decay rate has been computed in

the numerically computed(y) (and hence its normaliza- this Paper. gcertarzn numbeffpf ?odgs will blfl in_lt_r;]e flre-.
tion) is dominated by the large-tail, a has a relatively large guency window where ampiincation IS possibie. 1he 1asing

error. Taking all the available data, the most likely value is thresholq IS given b.y the. smallestof theseK modes. In a
simple picture that is valid oncé>1, we can assume that

theK differenty’s are distributed independently according to
(17) P(y) [33]. The distributionP(y) of the smallest mode and
' hence of the lasing threshold then becomes

claim.

From our data, we propose the formula

213
: (16)

2
K]

L
a¢

(o

b 1 L
—WGX a_f

This value has been determined from a large number of P(y)=KP(y)
simulations that for space reasons cannot be presented here.

y K—1
1—] P(y’)dy'} . (29
0
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For K # 1, the distributiorP () of the lasing threshold is With increasingN and hence increasinlf, the probability
no longer identical to the distributioR( ) of the decay rate that a given mode has a smalthus decreases rapidly. On
of each individual mode. In particular, not only the precisethe other hand, we are interested in the smallest decay rate
form of these two distributions will be different, but also the out of theK modes, an increases linearly witiN. These
“typical” value of the lasing threshold can be different from are two counteracting effects, and it is not obvious which of
the typical decay ratg,. Interestingly, for chaotic cavities in these two is stronger.
the diffusive regime, it was found that the latter two quanti-  The effect of an increase of the system sizeon the
ties differ only insignificantly[34,35 which might seem contrary, is obvious. First, the average decay ragede-
counterintuitive. A slab geometry is more “complicated” in creases according to E(p). SecondM decreases from Eq.

that the scaling<«N “tries” to lower the lasing threshold (10), leading to even smaller values fgrof the lasing mode.
with increasingN. There have been some analytical attempts to compute the

lasing threshold for a chaotic cavitg4,35. For largeM, the

ForK>1, the distributionP(y) is sharply peaked around smally tail of Eq. (7) was approximated by

its maximum. The positiory,, of the maximum is given by
the solution of the equatiodP(y,)/dy,=0, hence

_ dP(ym)
d¥Ym

1
P(y)%m[l-l—erf(\/M/Z[y—l])]. (23
0

Ym
[1—]0 P(y')dyﬂ—m—l)[mm)]?
(20) This allows to arrive at scaling laws of the lasing threshold
for variableM at fixed K. Unfortunately, the difference be-

While Eq.(19) is difficult to compute numerically due to the tween two Counte_racting effects of an increaseNimre so
large exponentk —131, in Eq. (20), this exponent no small that Eq(23) is a bit too crude for our needs.
longer appears. We thus have to revert to a numerical procedure. Equation
Equation(20) depends ofP(y) which in turn depends on (7) can be rewritten using the incomplete gamma function
the dimensiond andN of the system. In assuming that the
number of propagating modes is equal to the wiNtbf the o
prapagating . r(a,x)zf t2-Te~tdt, (24)

sample, we already have made the assumption that the width «

(and hence also the lengtis measured in units 0f/2. (The
“2" accounts for polarization. The total number of modes in
the sample, thus iEN. We assume that a fractidrof them
is inside the amplification window of the dye, henbe

I'(a,0) reduces to the well-known gamma functibija).

For numerical reasons, it is advisable to introduce the regu-
=~ SR .7 larized I' function Q(a,x)=1I'(a,x)/I'(a). Fast numerical
=fNL. For simplicity, we neglect complications as the algorithms to comput€(a,x) exist.[Please note that in the

shape of the mode profilélt is easily incorporated into the L i .
numerics and we refrain from doing this just to prevent haV_Ilterature the definitions of the regularizédfunction some-

ing to introduce even more parametgrisdepends only on T\Ilrg\?vswoclalsc?;ii '?e\g:'éggz:% iI:s giﬂgig/:;r;?égxr);i as
the chemical properties of the dye and not on the dimensions P 9
of the samples.

In the following, we will show how to compute the most 1
likely lasing threshold for samples in both the diffusive and P(y)= )7[1— Q(M+1My)], (259

in the localized regimes.

M
A. Lasing threshold in the diffusive regime dP(y) _ (My) e My_ E[l—Q(M +1My)]
2 3 ' '
The change of the lasing threshold with increasing system dy  y’r(m) y
size is influenced by a subtle interplay betwdeandN in

determining the distributiorP(y) and in determining the

(25b)

total numberK =fNL of modes. y o1
If K>1, the lasing mode has a decay rate in the tpw- J'O P(y")dy’= y[Q(M+l,My)—1]+1—Q(M,My),
tail of P(y) (i.e., y<7yy ory<1). The weight of this tail is (250
1 M-1
f P(y)dy= (I\/I—l)leiM’ (21)  so that Eq(20) can be evaluated efficiently.
0 — 1)

and goes to zero a¥ becomes larger. Favl — o, the tail B. Lasing threshold in the localized regime

disappears completely, as is already obvious from the From Eq.(13), we directly arrive at

asymptotic form of the distribution,
dP(vy) Iny—In vy, (Iny—=1In )/0)2
2b exg —

(269

- 2 2

0 (y<1)

PMﬂw(y):[llyZ (yzl)
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10 100
L/E

FIG. 11. Most likely, lasing threshold as a function of the lenigth and the widthN of the sample. FoL/I=N (the lower right part of
the diagran, the sample is localized, far/l =N (the upper left pajt the sample is diffusive. The diagonal line marks the division, and the
results close to that line should thus be viewed with caution. The left diagram depicts the resaiksOfdr the central diagram fdfr
=0.001. The right diagram again depicts the results for the localized regimef withl but the horizontal axis has been rescaletl/t¢
instead ofL/l. The numbers at the contour lines mean @ in the diffusive regime, and ¥6/A in the localized regime.
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10
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the lasing threshold of a random laser in the diffusive regime
is by increasing its length, not by modifying its width.

As Fig. 11 shows, also in the localized regime, there is
only a small dependence dn This means that in a log-
normal distribution, the weight of the left tail is so small that
A further simplification is not possible, and we did not man-ynlessK is exponentially large,y,, cannot become much
age to find suitable approximations. Also for the localizedsmaller than the positiory, of the peak of the distribution.
regime, we thus are restricted to a numerical evaluation. The difference with the diffusive regime is that the lasing
threshold can be lowered efficiently not only by increasing
the length but also by decreasing the widthand hence
driving the system further into localization.

The lasing threshold is computed numerically from Ed. |t is no surprise that samples in the localized regime gen-
(20), using the formulas from Secs. VIl Aand VII B. Into the erally have a lower lasing threshold than samples in the dif-
formulas presented there, we have to insert the correct deysjve regime. We have shown that also the diffusive samples
pendence ofyo, M, o, etc., onL andN which was presented can have an “acceptably small” lasing threshold as it is
earlier in this paper. Despite this complication, the numericatrivial to make them very longsince there is no need to care
calculation is straight forward as E(O) possesses a single much about their width For both the diffusive and the lo-
root only. Since this root has a change of sign, it is easilycalized regimes, the typical decay rates of a single mode are

found numerically. comparable to the lasing threshold.
Figure 11 shows the results for both the diffusive and the

localized regimes, for botti=0.11 and f=0.001l. (The
mean-free path appears as a factor since the figure is in units
L/l and notL.) The formulas found in this paper are valid = We have numerically computed the distributions of the
deep in the diffusive and localized regimes, respectivelyresidues(or decay ratesof a disordered slab. The slab has
Near the crossover, hence near the lireN|, this condition  lengthL, mean-free path, width and cross-sectional arég
is not fulfilled. The numerical values near the diagonal linerespectively N is given as number of propagating chanpels
in Fig. 11 should thus be viewed with caution. and velocity of propagatiort. We were able to “guess”
As can be seen from the figure, in the diffusive regimesimple analytical formulas that were able to describe the nu-
with N>L/I, the lasing threshold becomes almost indepenmerical results well.

eu'2/4

bymo
=¥ 1+erf

2 In(yl yg) — a?
20 '

i
JO P(y)dy’
(26b)

C. Numerical results

VIIl. CONCLUSIONS

dent of the widthN of the samplgfor sufficiently largeN), For a sample in the diffusive regimé& £NI) we found in
and the most likely value of the lasing threshold is about Egs.(7)—(10),
2cl L2 [yL2
Y= T (27 P(y)= mp( ETk (2839
. . N Ny
hence the value given by Ed9). This means that even 1 ry{1+ Tr061rLe
thoughK>1, P(y) for y<1 is already so small that it domi- Ply)=—| 1- . (28D
nates over the large value &f. Differences between this 2
S EAE TN

simple approximation and the precise numerical result ap-
pear for finiteN, with the size of this difference depending
on f. However, for designing experiments, it is obvious fromwherel’(a,x) is the incomplete gamma function. The agree-
the results presented here that the only feasible way to lowanent between the numerical results and the proposed formu-
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las is good, and there is the possibility that E28) might
become exact in the limlt/I>N>1. However, there is only
numerical and no analytical evidence to back this claim.

For a sample in the localized regime£ NI) with local-
ization lengthé=(N+1)I/2, we found in Sec. VI,

1 L (Iny—Inyp)?
P(y)—mextn(a—g——az , a=1.12,
_a L _2(L)\* -
Yo—mex “ag)r "7 3\az (29

PHYSICAL REVIEW E 67, 016603 (2003

son, Eq.(29) should be understood as an approximate fit
only, and it very probably differs from the exact relation,
especially outside the band center.

These results can be applied to both electronic and pho-
tonic systems. For photonic systems, we have shown that
under realistic assumptions, the lasing threshold of a random
laser is close toy, both in the diffusive and in the localized
regimes. Equation&8) and(29) thus not only give the dis-
tribution of the decay rate of each individual mode but also a
good estimate of the lasing threshold, i.e., the smallest decay
rate of a large number of modes.

ACKNOWLEDGMENT

The quality of the simulations results in the localized regime Valuable discussions with C. W. J. Beenakker are ac-
is somewhat less than in the diffusive regime. For this reaknowledged.

[1] C.W.J. Beenakker, Rev. Mod. Phy&9, 731 (1997.
[2] T. Guhr, A. Muler-Groeling, and H.A. Weidenniier, Phys.
Rep.299 189(1998.

that the average loss rate has to be proportionak.toNe
should note that this somewhat counterintuitive behavior is
also observed for chaotic caviti€$3].

[3] E.P. Wigner, inConference on Neutron Physics by Time-of-[21] H.U. Baranger, D.P. DiVincenzo, R.A. Jalabert, and A.D.

Flight (Gatlinburg, Tennessee, 195@p. 59-70.

[4] O. Bohigas, M.J. Giannoni, and C. Schmit, Phys. Rev. I53t.
1(1984.

[5] C.W.J. Beenakker, Phys. Rev. Ledtl, 1829(1998.

[6] C.W.J. Beenakker, iDiffuse Waves in Complex Medixol.

531 of NATO Advanced Studies Institute, Series C: Mathemati-

cal and Physical Sciengedited by J.-P. Fougu&luwer, Aca-
demic, Dordrecht, 1999 pp. 137-164.

[7] M. Patra and C.W.J. Beenakker, Phys. Re% R43(1999.

[8] M. Patra and C.W.J. Beenakker, Phys. Re%0A4059(1999.

[9] P.W. Brouwer, Phys. Rev. B7, 10 526(1998.

[10] P.W. Brouwer and C.W.J. Beenakker, Phys. Re\61B 7739
(1995.

[11] P.W. Brouwer and C.W.J. Beenakker, Phys. Re\63 4695
(1997.

[12] M. Mehta, Random MatricegAcademic, New York, 1990

[13] Y.V. Fyodorov and H.-J. Sommers, J. Math. Phg8, 1918
(1997.

[14] D.S. Wiersma and A. Lagendijk, Phys. Wod€(1), 33 (1997).

[15] Optical experiments always preserve time-reversal symmetry

Stone, Phys. Rev. B4, 10 637(1991).
[22] G. Schrauf, ACM Trans. Math. Softvt.7, 335(1991).
[23] L. Kaufman, ACM Trans. Math. Softwl0, 73 (1984).
[24] L. Kaufman, ACM Trans. Math. Softw26, 551 (2000.
[25] H. Schomerus, K.M. Frahm, M. Patra, and C.W.J. Beenakker,
Physica A278 469 (2000.
[26] K.M. Frahm, H. Schomerus, M. Patra, and C.W.J. Beenakker,
Europhys. Lett49, 48 (2000.
[27] G.H. Golub and C.F. van LoaMatrix Computations2nd ed.
(John Hopkins University Press, Baltimore, MD, 1989
[28] E. Andersonet al, LAPACK Users’ Guide 3rd ed. (SIAM,
Philadelphia, 1999
[29] On a modern computer, a single diagonalization fol a
=700, N=70 system takes about two days and uses 256
Mbytes of memory. While this memory requirement usually is
no problem, the computing time usually is. Remember that the
task is to compute the distribution of the decay rates. Hence,
many matrices with different realizations of the random poten-
tial P(x,y) have to be diagonalized—not just a single matrix.
However, the restrictions imposed by time and memory are of
the same order of magnitude.

unless a magneto-optical effect is included. For electric sys{30] The algorithms will return eigenvalues that have a very

tems, time-reversal symmetry can be broken by applying a
large magnetic field to the sampléSuch fields are created

routinely in experiments.

[16] H.-J. Sommers, Y.V. Fyodorov, and M. Titov, J. Phys32
L77 (1999.

[17] M. Titov and Y.V. Fyodorov, Phys. Rev. B1, 2444(2000.

[18] T.S. Misirpashaev and C.W.J. Beenakker, Phys. Re&7A
2041(1998.

[19] M. Terraneo and I. Guarneri, Eur. Phys. J18 303 (2000.

[20] It is not possible to have more than ideal coupling. For
<1, the loss rates are smaller than for 1, so this is easily
identified as “subideal.” Foi>1, the loss rates split into two
separate parts: Most become smaller, as<darl, while a few

loss rates become very large, thereby fulfilling the requirement

small but finite deviatiorjz—z'| from their correct valuez.

Since we are primarily interested in the imaginary part of the

eigenvalue and want it to be as precise as possible, the mag-

nitude of the real part has to be as small as possible.

[31] K.B. Efetov and A.l. Larkin, Zh. Esp. Teor. Fiz.85, 764
(1983 [Sov. Phys. JETBS, 444 (1983].

[32] O.N. Dorokhov, Pis'ma Zh. Esp. Teor. Fiz.36, 259 (1982
[JETP Lett.36, 318(1982].

[33] O.N. Dorokhov, Zh. Esp. Teor. Fiz.85, 1040 (1983 [Sov.
Phys. JETF8, 606 (1983].

[34] M. Kappus and F. Wegner, Z. Phys. B: Condens. Mat&r5
(1981).

[35] D.S. Wiersma, M.P. van Albada, and A. Lagendijk, Nature

(London 373 203(1995.

016603-10



